耳介形状の伸長が伝達関数に及ぼす影響の検討

☆金子祐太郎, 竹本浩典, 苣木禎史, 飯田一博(千葉工大)

1 はじめに

精度の高い3次元音像制御を実現するため には,個人に最適な頭部伝達関数(Head-Related Transfer Function: HRTF)を提供する必 要がある。特に,正中面では,HRTFの第1,2 ピーク(P1, P2)と第1,2 ノッチ(N1, N2) が音像の上昇角知覚の手掛かり(スペクトラ ルキュー)として重要である[1]。そして,こ れらのピークとノッチは耳介によって生成さ れる[2]。例えば,P1は耳介の深さ方向の1/4 波長共鳴に,P2は耳介の上下方向の1/2 波長 共鳴に由来する[2]。ゆえに,前後・上下・左 右方向への耳介の伸長は,スペクトラルキュ ーの周波数やレベルにさまざまな影響を与え ると考えられる。

しかし、これまで単純化した耳介形状モデ ルを用いた検討は行われたが[3][4]、実際の耳 介形状を用いた検討はされてこなかった。そ こで本稿では、磁気共鳴画像法(Magnetic Resonance Imaging: MRI)によって計測した実 際の耳介形状の前後・左右・上下方向および これらすべての方向への伸長が、P1、P2、N1、 N2(以下 P1P2N1N2)の周波数とレベルにど のような影響を及ぼすのかシミュレーション によって検討したので報告する。

2 材料と方法

2.1 耳介形状と伸長方向・比率

本研究では、MRI で撮像した男性2名 (M1, M2) と女性2名 (F1,F2)の頭部形状と,音 響計測用マネキン KEMAR (Large Pinna)の3 次元形状データ[5]から切り出した左耳形状 を材料として用いた。これは,正中面におけ る HRTF は,耳介形状から計算された耳介伝 達関数(Pinna-Related Transfer Function: PRTF) によって近似できるためである[2]。

Fig. 1 は耳介形状と伸長方向を示す。切り 出した耳介形状(以下, 1.0 倍形状)を基準と して,前後・上下・左右の各方向と全方向に 0.8~2.0 倍(0.2 倍間隔)の範囲で伸長を行っ た。なお,伸長率の範囲は耳介形状の個人差 を基に決定した[6]。

耳介形状の伸長は以下の手順で行った。ま ず, CAD のフォーマットの一つである STL 形 式の 1.0 倍形状を, MeshMixer (AutoDesk, Inc.) を用いて伸長した。次に, この伸長した形状 を, VCAD (理化学研究所)を用いて 1.0 mm 間隔で空間離散化し, 直交格子データ(ボク セル)とした。

Fig.1 M2 耳介形状と伸長方向(左図:左側面 観,右図:前面観)

2.2 PRTF の計算

全ての耳介形状からPRTFを時間領域差分 法によって計算した[7]。まず,外耳道入り口 に音源点を置き,音源点と同じ矢状面にあっ て音源点から半径20 cmの円周上に10°間隔で 36の観測点を置いた。次に,音源点にガウシ アンパルスを印加して各観測点で5 msの応答 を計算した。そして,音響の相反定理により, 観測点から音源点までのPRTFを計算した[2]。 なお,空間離散化間隔は1 mmであるので,時 間離散化間隔は1.25 μsとした。

2.3 P1P2N1N2 の抽出

仰角7方向(仰角0~180°, 30°間隔)にお けるPRTFの極大値,極小値を求め,1.0 倍形 状の第1,2極大値をP1,P2,第1,2極小値 をN1,N2と定めた。伸長した耳介形状の P1P2N1N2は1.0 倍形状のP1P2N1N2とスペ クトル上で対応する極大値,極小値とした。 なお,伸長した耳介形状のスペクトルでは, ノッチの消失や新たなピークの出現により, 必ずしも1.0 倍形状のP1P2N1N2と対応する ピークやノッチが特定できない場合もあった。

^{*} A study on effects of pinna shape expansion on transfer functions, by KANEKO, Yûtarô, TAKEMOTO, Hironori, CHISAKI, Yoshifumi, and IIDA, Kazuhiro (Chiba Institute of Technology).

3 結果と考察

被験者4名とKEMARの左耳形状を各方向 と全方向に伸長したときの,P1P2N1N2 周波 数とレベルの変化について分析を行った。本 稿では,被験者に共通した変化について M2 のデータを用いて記述する。

3.1 全方向伸長による P1P2N1N2 の変化

Fig. 2 は M2 の耳介を全方向に伸長したと きの仰角 0°における伸長率と PRTF の変化を 示す。Fig. 3 は Fig. 2 から抽出した各伸長率に おける P1P2N1N2 周波数の 1.0 倍の周波数に 対する比率を示す。

Fig.2 で示すように、PRTF は伸長率に応じ て周波数軸上で線形に伸長した。また、Fig.3 に示すように、各伸長率と P1P2N1N2 周波数 の比率は、伸長率の逆数と一致した。これら の結果は、全ての耳介と全ての仰角方向に共 通していた。つまり、全方向に N 倍伸長した P1P2N1N2 周波数は 1.0 倍形状の P1P2N1N2 周波数 1/N 倍となった。これは、耳介の全方 向への N 倍の伸長と、耳介形状が一定で音速 が 1/N になったことが等価なため、スペクト ルが周波数軸に沿って 1/N 倍となった。

Table 1 は M2 の耳介を全方向に 0.8~2.0 倍 伸長したときの P1P2N1N2 レベルの変動量 (最大値と最小値の差)と相関を示す。レベ ルの変動量はピークよりノッチで大きい傾向 が見られた。これはすべての被験者で共通し ていた。ノッチは経路差によって生じるため に、音源点のわずかな位置の変化が大きなレ ベルの変動を生じさせることがあると推測さ れる。すなわち、耳介形状の伸長によるノッ チのレベルの変動は、ピークのレベルの変動 に比べて、音源点の位置の変化に起因する大 きな変動も含まれていることに留意する必要 がある。

る PRTF の変化

Fig. 3 全方向に伸長したときの仰角 0°におけ る伸長率と P1P2N1N2 周波数の比率

Table 1 M2 の 0.8~2.0 倍における各仰角[°]の P1P2N1N2 レベルの変動量[dB],各仰角[°]の P1P2N1N2 レベルと伸長率の相関,太文字: 変動量が 5 dB 以上,赤文字:相関係数 0.8 以 上を正の相関。

仰角	0	30	60	90	120	150	180
P1	1.5	1.5	1.2	1.4	1.2	1.1	1.1
P2	1.4	1.4	1.9	1.7	1.5	0.9	1.3
N1	7.4	11.8	1.3	1.4	1.2	0.8	14.8
N2	1.4	2.5	3.8	1.7	1.0	3.3	1.8

3.2 左右方向伸長による P1P2N1N2 の変化

Fig. 4 は M2 の耳介を左右方向に伸長した ときの仰角 0°における伸長率と PRTF の変化 を示す。Fig. 5 は Fig. 4 から抽出した各伸長率 における P1P2N1N2 周波数の 1.0 倍の周波数 に対する比率を示す。

Fig. 4 に示すように, P1P2N1N2 周波数は 伸長率が大きくなると下降し, 伸長率が小さ くなると上昇した。伸長率が大きくなるにつ れ, P1の比率だけが P2N1N2 に比べ小さく なった。この結果は仰角 7 方向に共通してい た。これは, P1 が耳介の腔の深さ方向(左 右方向)の1/4 波長の共鳴に由来するため [2], この方向の伸長が耳介の腔を深くして 共鳴周波数を低下させるためと考えられる。

M2の耳介を左右方向に伸長したとき,伸 長率や仰角と P2N1N2 レベルの変動に一定 の傾向は見られなかった。しかし,Fig.6で 示すように,伸長率が大きくなると全ての仰 角方向で P1 レベルが 5~10 dB 増加する強い 正の相関がみられた。これらは全ての被験者 で共通していた。これも,P1 が耳介の深さ 方向(左右方向)の1/4 波長の共鳴に由来す るため[2],この方向の伸長は耳介を深くし て共鳴を強めるためと考えられる。

Fig. 4 左右向に伸長したときの仰角 0°における PRTF の変化

Fig. 5 左右方向に伸長したときの仰角 0°にお ける伸長率と P1P2N1N2 周波数の比率

Fig. 6 左右方向に伸長したときの仰角7方向の P1 レベルの変化

3.3 前後方向伸長による P1P2N1N2 の変化

Fig. 7 は前後方向に伸長したときの仰角 0° における PRTF の変化である。なお,伸長率 2.0 倍では,N2 が特定できなかった。

Fig.7に示すように, P1P2N1N2 周波数は伸 長率が大きくなると下降した。これはすべて の被験者の仰角7方向で共通していたが,仰 角ごとに,下降の傾向が異なっていた。

M2 の耳介を前後方向に伸長したとき,伸 長率や仰角と P2N1N2 レベルの変動に一定の 傾向は見られなかった。しかし, Fig. 8 で示す ように,伸長率が大きくなると P1 レベルの 低下が前方(0~60°)で大きくなった。この傾 向はすべての被験者に共通して見られた。な お, Fig. 8 の仰角 120~180°では P1 は P2 と重 複して特定できず,プロットされていない。

Fig. 7 前後方向に伸長したときの仰角 0°にお ける PRTF の変化

Fig. 8 前後方向に伸長したときの仰角7方向のP1 レベルの変化

3.4 上下方向伸長による P1P2N1N2 の変化

Fig. 9 は M2 の耳介を上下方向に伸長した ときの仰角 0°の PRTF の変化を示す。Fig. 10 は Fig. 9 から抽出した各伸長率における P1P2N1N2 周波数の 1.0 倍の周波数に対する 比率を示す。なお,伸長率が 1.8 倍および 2.0 倍の PRTF では N2 を特定できなかったため, Fig. 10 ではプロットされていない。また,全 ての被験者で,耳介の上下方向の伸長は,他 の方向への伸長に比べて,ピークやノッチが 特定できない場合が多く見られた。

M2 の耳介を上下方向に伸長したとき,他 の方向に伸長したときと同様に,P1P2N1N2 周波数は下降した。しかし,Fig.9,Fig.10で 示すように,P1 周波数はP2N1N2 周波数と比 べて,伸長率が大きくなっても変化が小さか った。これは仰角7方向に共通していた。

Table 2 は M2 の耳介を上下方向に伸長した ときの P1P2N1N2 レベルの変動量(最大値と 最小値の差)と正負の相関を示す。なお,あ る仰角方向において,4 つ以上の伸長率に対 してピークやノッチを特定できなかった場合 は表から除外した。この表に示すように,M2 の 耳 介 を 上下 方 向 に 伸 長 した とき, P1P2N1N2 レベルの変動には特定の傾向が見 られなかった。これは,他の被験者でも共通 していた。

Fig. 9上下方向に伸長したときの仰角 0°にお ける **PRTF** の変化

Fig. 10 上下方向に伸長したときの仰角 0°に おける P1P2N1N2 周波数の比率

Table 2 M2 の 0.8~2.0 倍における各仰角[°]の P1P2N1N2 レベルの変動量[dB],各仰角[°]の P1P2N1N2 レベルと伸長率の相関,太文字: 変動量が 5 dB 以上,赤文字:相関係数 0.8 以 上を正の相関,青文字:相関係数 - 0.8 以下を 負の相関。

仰角	0	30	60	90	120	150	180
P1	1.5	1.6	4.8	6.6	4.6	2.4	3.1
P2	1.9	6.0	2.6	9.8	8.4	_	6.8
N1	15.8	17.7	0.5	5.9	—	_	26.1
N2	11.1	10.4	16.3	8.1	14.4	13.6	7.7

4 まとめ

本稿では、被験者4名とKEMARの耳介形 状を左右・前後・上下方向および全方向へ伸 長したときの仰角7方向の伝達関数への影響 をPIP2N1N2の周波数とレベルの変動に着目 して検討し、以下の結果を得た。

(1) どの方向に伸長しても、全ての仰角方向 で P1P2N1N2 周波数は下降する。全方向 に伸長したとき、P1P2N1N2 周波数は伸 長率の逆数倍で下降した。1 方向に伸長 したときは全方向に伸長したときに比べ て, **P1P2N1N2** 周波数の下降の程度が弱かった。

- (2) 左右方向に伸長したとき、P1 周波数は P2N1N2 周波数に比べて下降の程度が強 かった。しかし、上下方向に伸長したと き、P1 周波数は P2N1N2 周波数に比べて 下降の程度が弱かった。
- (3) 2つの例外を除き、伸長方向・伸長率と P1P2N1N2 レベルに一定の傾向は見られ なかった。ただし、左右方向に伸長した とき、全ての仰角方向でP1 レベルは上昇 した。また、前後方向に伸長したとき、 前方でP1 レベルが下降した。

左右前後上下のいずれか1方向に伸長した ときは、P1P2N1N2 周波数が伸長率の逆数の 関係で低下しないにも関わらず、全方向に伸 長した場合は逆数に比例して低下した。その 理由については、今後の検討課題としたい。

謝辞

本研究はJSPS科研費 JP19K12068の助成を受けた。

参考文献

- Iida and Ishii., Applied Acoustics, 129, 239-247, 2018.
- [2] Takemoto *et al.*, JASA, 132, 3832-3841, 2012.
- [3] 岡松他, 音講論(春), 563-564, 2012.
- [4] 竹本他, 音講論(春), 589-592, 2013.
- [5] Burkhard et al., JASA, 58, 214-222, 1975.
- [6] 石井他, 音講論(秋), 463-466, 2012.
- [7] 竹本,日本音響学会誌,73(3),166-172, 2017.