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Abstract: The vocal tract can be modeled as an acoustic tube in the low-frequency region because
the plane wave propagation is dominant. Further, it can be considered static for a limited short period
during running speech, such as vowels. Thus, its acoustic properties have been examined mainly using
the transmission line model (TLM), that is, the one-dimensional static model in the frequency domain.
In the present paper, we propose a one-dimensional static model in the time domain based on the
finite-difference time-domain method. In this model, the vocal tract is represented by the cascaded
acoustic tubes of different cross-sectional areas. The pressure and wall vibration effects are simulated
at the center of each tube. On the other hand, the volume velocity is calculated at the labial end.
According to the leapfrog algorithm, the pressure and volume velocity are sequentially computed. As a
result, the impulse responses of the vocal tracts for the five Japanese vowels were calculated, and the
corresponding transfer functions agreed well with those calculated by the TLM in the low-frequency
region. The mean absolute percentage difference of the lower four peaks for the five vowels was 2.3%.
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1. INTRODUCTION

The vocal tract is an internal space in the human body

from the glottis to the lips or nostrils. It consists of

laryngeal, pharyngeal, oral, and nasal cavities, and has a

complex three-dimensional shape that rapidly changes

during speech.

In the low-frequency region, the vocal tract, excluding

the nasal cavity, can be approximated by an acoustic tube;

that is, it is a one-dimensional (1D) model because of the

dominant plane wave propagation [1]. The shape of the 1D

model is determined by the vocal tract area function, which

represents the changes in the cross-sectional area of the

vocal tract along the long axis from the glottis to the lips.

The area is measured discretely at equal intervals to divide

the vocal tract into a series of cascaded short acoustic tubes

with different cross-sectional areas. The pressure and

volume velocity corresponding to the voltage and current,

respectively, can be calculated for each tube using an

electric circuit equivalent to the tubes. Thus, the 1D model

is referred to as the equivalent circuit model or trans-

mission line model (TLM). The 1D model is useful for

examining the acoustic properties of the vocal tract and

synthesis of the speech sounds; however, the upper limit

frequencies for which the 1D models without side

branches, such as the piriform fossae, are valid remain

debatable: 4 kHz estimated by Flanagan [2] and 5 kHz by

Stevens [1].

Many 1D models simulate wave propagation in the

static vocal tract in the frequency domain [e.g., 1–3]. The

vocal tract can be considered static over short time periods

during an utterance, such as vowels. The transfer function

for a static vocal tract can be easily calculated using the

TLM, which considers the losses caused by the thermal

exchange, viscous resistance, and wall vibration on the

vocal tract wall. Therefore, the acoustic properties of the

static vocal tract have been examined using this model

[1–3]. However, it is difficult to visualize the wave

propagating process in the vocal tract using this model.

Several 1D models simulate wave propagation in the

dynamic vocal tract in the time domain, such as the well-

known Maeda’s model [4] and wave-reflection model [5].

Although they are modeled as electric circuits, the area

and length of each acoustic tube can be changed over time;

some areas even become zero at the stop consonant. The

effects of these changes must be calculated in addition

to the pressure and volume velocity of the traveling waves
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at each simulation step. Therefore, while these models

are very complex and difficult to implement, they can

synthesize continuous speech sounds, including conso-

nants.

The purpose of the present study was to develop a

simple 1D model that simulates wave propagation in the

static vocal tract in the time domain to better understand

vocal tract acoustics. This model can calculate the impulse

response when the impulse is input and synthesize vowel

sounds when the glottal waves are input. Thus, students

can easily confirm that the signals obtained by convolving

the impulse response into the glottal waves match those

obtained by inputting the same glottal waves into the

model, thereby improving the understanding of linear time-

invariant systems. Furthermore, this model can visualize

the wave propagating process, such as the resonance modes

of the pressure or volume velocity in the vocal tract, when

the sinusoidal waves with the resonance frequencies are

input.

In the following sections, the governing equations

considering the wall vibration effects are formulated first

because these effects cause a non-negligible frequency shift

of the first peak of the transfer function [1]. Then, the

equations are discretized based on the 1D finite-difference

time-domain (FDTD) method, and the calculation proce-

dure is described with a pseudocode. Finally, the transfer

functions calculated using the proposed model are com-

pared with those calculated using the TLM to validate the

proposed model.

2. FORMULATION

On the vocal tract wall, thermal exchange, viscous

resistance, and wall vibration cause acoustic energy losses

[1–3]. Consequently, the peaks of the transfer function

reduce in level; that is, the bandwidths increase. Of these

three causes, the wall vibration effects non-negligibly

increase the first peak frequency [1]. Thus, only the wall

vibration effects are considered in the following formula-

tion. Meanwhile, the visco–thermal effects are approxi-

mated by incorporating a pressure attenuation term.

Figure 1 shows an acoustic tube representing the vocal

tract. The cross-section is a circle whose area gradually

changes along the long axis from the glottis to the lips; that

is, the x-axis. Let Aðx; tÞ, pðx; tÞ, and Uðx; tÞ be the cross-

sectional area, pressure, and volume velocity, respectively,

at position x and time t. Additionally, let �x and �t be

sufficiently small in terms of the distance and time.

Furthermore, the wall surface is assumed to displace only

in the radial direction perpendicular to the x-axis owing to

the wall vibration. Let r0 be the original radius at position

x, and r be the displacement at time t.

2.1. Continuity Equation

According to the definition of the bulk modulus, the

pressure fluctuation �p can be represented as:

�p ¼ ��c2 �V

V
; ð1Þ

where � is the density of the medium, c is the speed of

sound in the medium, V is the volume of the small section,

and �V is the sum of the volume flow out of the section

during �t and the volume increment owing to the wall

displacement caused by the wall vibration. Because �x is

sufficiently small, the volume of a truncated cone can be

approximated by that of a tube as follows:

�p ¼ ��c2 ðUðxþ�x; tÞ � Uðx; tÞÞ�t
Aðx; tÞ�x

� �c2 ðAðx; t þ�tÞ � Aðx; tÞÞ�x
Aðx; tÞ�x

: ð10Þ

Because �p ¼ _p�t, this equation can be simplified as:

_p ¼ ��c2 U
0

A
� �c2

_A

A
; ð2Þ

where _p is the time derivative of pðx; tÞ, U0 is the spatial

derivative of Uðx; tÞ, and _A is the time derivative of Aðx; tÞ.
Without the second term, Eq. (2) is the acoustic

continuity equation in a lossless medium because the

spatial derivative of the particle velocity u0 is equal to

U0=A. Thus, the second term expresses the pressure

fluctuation caused by the wall vibration. To approximate

the visco–thermal losses on the vocal tract wall, if another

term related to compressibility attenuation in the medium

[6] is incorporated, then Eq. (2) is transformed as

follows:

_p ¼ ��c2 U
0

A
� �c2

_A

A
� ��c2p; ð3Þ

where � is the attenuation coefficient.

2.2. Equation of Motion

The impulse J in the x-axis direction of the truncated

cone, shown in the left panel of Fig. 1, is calculated as

follows:Fig. 1 A small section of the vocal tract (left panel) and
wall displacement (right panel).
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J ¼
Z tþ�t

t

pðx; sÞAðx; sÞds

�
Z tþ�t

t

pðxþ�x; sÞAðxþ�x; sÞds

þ
Z tþ�t

t

Z xþ�x

x

pðy; sÞA0ðy; sÞdyds: ð4Þ

The third term on the right side of Eq. (4) is the impulse

that the air of the truncated cone receives from the wall

owing to the sound pressure. Because �t is sufficiently

small, by performing a Taylor expansion and numerical

integration on the right side of Eq. (4), the first-order terms

of �t are extracted as follows:

J ¼ pðx; tÞAðx; tÞ�t

� pðxþ�x; tÞAðxþ�x; tÞ�t

þ pðx; tÞðAðxþ�x; tÞ � Aðx; tÞÞ�t

¼ �Aðxþ�x; tÞp0�x�t: ð40Þ
Because the impulse J is equal to the change in

momentum, ��x _U�t and �xAðxþ�x; tÞ can be approxi-

mated by �xAðx; tÞ, and Eq. (40) is simplified as:

� _U ¼ �Ap0: ð5Þ

Equation (5) is the acoustic equation of motion in a lossless

medium because _u ¼ _U=A. Note that wall vibration effects

appear in the continuity equation but not in the equation of

motion.

2.3. Wall Vibration

The displacement of the wall surface r (Fig. 1) is

obtained by solving the equation of motion for a mass-

spring-damper system representing the vocal tract wall.

The mass, resistance, and spring constant per unit area of

the wall surface are M, B, and K, respectively. The

equation of motion is:

M €r þ B _r þ Kr ¼ p; ð6Þ

where €r ¼ d2r=dt2 and _r ¼ dr=dt.

2.4. Discretization of Governing Equations

Figure 2 shows the staggered grid [7] in the cascaded

acoustic tubes with an equal length, �l, representing the

vocal tract. Using this staggered grid and leapfrog

algorithm [7], the governing equations can be discretized.

Here, pðn;mÞ denotes the pressure at the center of the n-th

tube at time step m, and Uðn;mÞ indicates the volume

velocity at the labial end of the n-th tube. The number of

tubes is N, with the first tube (n ¼ 1) corresponding to the

glottal end and the last tube (n ¼ N ) to the labial end.

Although the second and third terms on the right side

of Eq. (3) are necessary for the pressure correction, these

terms require p. Thus, at each simulation step, p is first

calculated using the following equation.

_p ¼ ��c2 U
0

A
: ð30Þ

This is the continuity equation for lossless media. Although

the wall vibration can change the area of each tube, the

tube shape can be considered almost static because the

amount of change is sufficiently small. Thus, the area of

the n-th tube, AðnÞ, is time-invariant in Eqs. (30) and (5).

Therefore, Eq. (30) can be discretized with second-order

accuracy in space and time as follows.

pðn;mþ 1=2Þ ¼ pðn;m� 1=2Þ

�
�t

�l

�c2

AðnÞ
fUðn;mÞ � Uðn� 1;mÞg; ð7Þ

where �t is the simulation time step. Here, the pressure

calculation is �t=2 behind the volume velocity calculation

according to the leapfrog algorithm because at each

simulation step, the pressure calculation is executed first,

followed by the volume velocity calculation. Equation (7)

indicates that p at the new time step can be calculated from

p and U at the previous time steps.

Using this p, the second and third terms of Eq. (3) can

be calculated. For the second term, r can be obtained by

solving Eq. (6). Let rp be r at time t ��t and rpp be r

at time t � 2�t, then the derivative is approximated by the

difference; r at time t can be obtained as follows:

r ¼
pþMð2rp � rppÞ=�t2 þ Brp=�t

M=�t2 þ B=�t þ K
: ð8Þ

Then, the second term of Eq. (3) is approximated and

linearized as follows:

��c2
_A

A
�t ¼ ��c2 Aðn;mþ 1=2Þ � Aðn;m� 1=2Þ

�tAðnÞ
�t

¼ ��c2 �ðr0 þ rÞ2 � �ðr0 þ rpÞ2

�r20

� ��c2 2ðr � rpÞ
r0

: ð9Þ

Note that �t is derived from the left side of Eq. (3):

_p � fpðn;mþ 1=2Þ � pðn;m� 1=2Þg=�t. In addition, the

wall vibration effects can be controlled by multiplyingFig. 2 Staggered grid in the cascaded acoustic tubes.
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Eq. (9) by the adjustment factor � (0 � � � 1). Therefore,

the second term of Eq. (3) approximating by Eq. (9) can be

discretized as follows:

� ��c2 2frðn;mþ 1=2Þ � rðn;m� 1=2Þg
r0ðnÞ

; ð90Þ

where rðn;mþ 1=2Þ and rðn;m� 1=2Þ are the radii of

the n-th tube at the current and previous simulation time

steps, respectively, and r0ðnÞ is the original radius of the

tube.

Similarly, the equation of motion, Eq. (5), can be

discretized with second-order accuracy in space and time

as follows:

Uðn;mþ 1Þ ¼ Uðn;mÞ

�
�t

�l

AðnÞ
�
fpðnþ 1;mþ 1=2Þ

� pðn;mþ 1=2Þg: ð10Þ

Here, Eq. (10) indicates that U at the new time step can

be calculated from U and p at the previous time steps, as

in Eq. (7).

2.5. Input Volume Velocity

As shown in Fig. 2, the volume velocity at the glottal

end of the first tube was not defined. Thus, the volume

velocity should be provided externally as UinðmÞ. When

an ideal impulse, that is, 1 in the first step and 0 in the

other steps, is provided, the impulse response can be

obtained as pout, which is the output pressure waves at the

lips. Using discrete Fourier transform, the obtained impulse

response can be converted into the transfer function of

pout=Uin. When the glottal waves, such as the Rosenberg

waves [8], are provided, vowel sounds can be obtained

as pout.

2.6. Radiation Impedance

According to Fig. 2 and Eq. (6), the volume velocity at

the labial end of the N-th tube cannot be calculated. Thus,

to calculate UðN;mÞ, radiation impedance should be

introduced. Let Aout and Uout be the area and volume

velocity of the N-th tube, respectively. According to Maeda

[4], the acoustic radiation at the lips can be modeled by

two elements, susceptance Srad and conductance Grad in

parallel, which represent a circular piston in an infinite

baffle. Essentially,

Uout ¼
Z t

0

dtSradpout þ Gradpout; ð11Þ

where Srad ¼ 3�
ffiffiffiffiffiffiffiffiffiffiffi
�Aout

p
=8� and Grad ¼ 9�2Aout=128�c. In

the present study, at time step m, Aout ¼ AðN Þ, pout ¼
pðN;m� 1=2Þ, and Uout ¼ UðN;mÞ. Thus, Eq. (11) can be

approximated as follows:

UðN;mÞ ¼ �tSrad

X
m

pðN;m� 1=2Þ

þ GradpðN;m� 1=2Þ: ð12Þ

To improve the calculation accuracy, the trapezoidal rule

should be applied to Eq. (11).

2.7. Stability Condition and Simulation Procedure

Prior to the simulation, �l and �t are determined. In

the FDTD method, �l is typically set to 1/10–1/20 of the

wavelength. According to the Courant–Friedrichs–Lewy

condition, �t can be set to satisfy the stability condition

�t � �l=c [9].

When the input volume velocity Uin consists of M

steps, the main part of the simulation procedure is

presented in the following pseudocode:

psum ¼ 0;

for m ¼ 1; 2; . . . ;M

p½1� ¼ p½1� �
�t

�l

�c2

A½1�
ðU½1� � Uin½m�Þ;

for n ¼ 2; 3; . . . ;N

p½n� ¼ p½n� �
�t

�l

�c2

A½n�
ðU½n� � U½n� 1�Þ;

rpp½n� ¼ rp½n�;
rp½n� ¼ r½n�;

r½n� ¼
p½n� þMð2rp½n� � rpp½n�Þ=�t2 þ Brp½n�=�t

M=�t2 þ B=�t þ K
;

p½n� ¼ p½n� � ��c2 2ðr½n� � rp½n�Þ
r0

� ��c2p½n��t;

end

for n ¼ 1; 2; . . . ;N � 1

U½n� ¼ U½n� �
�t

�l

AðnÞ
�
ðp½nþ 1� � p½n�Þ;

end

psum ¼ psum þ p½N�;
U½N� ¼ �tSradpsum þ Gradp½N�;

end

Here, psum is the summation of pout from the first to the

current step, and � is the adjustment coefficient of the wall

vibration effects. Note that the calculation of the wall

vibration in the first tube is omitted in this pseudo code.

Although the same variable appears on both sides, the time

step is different. For example, U½n� on the right side is one

step (�t) behind that on the left side.
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3. VALIDATION

The simulation results are compared with those of

TLM to examine the validity of the proposed model.

Although the TLM does not always accurately calculate

acoustic properties of the vocal tract in a wide frequency

region, it is expected to be valid in the low-frequency

region below 4 or 5 kHz [1,2]. Thus, by using the TLM

and a uniform tube, the transfer function and radiation

impedance are first investigated under the lossless wall

condition. Subsequently, using the uniform tube with all

the losses on the wall, the proper implementation of the

wall vibration effects is examined. The adjustment factor �

is tuned to agree with the first peak frequency calculated

by the proposed model ( fR1) with that calculated by the

TLM ( fR1 TLM). Finally, the transfer functions of the five

Japanese vowels are calculated using the proposed model

and TLM for comparison. Furthermore, the first four

peak frequencies calculated by the proposed model

( fR1– fR4) are compared with those calculated by TLM

( fR1 TLM– fR4 TLM).

The TLM proposed by Adachi and Yamada [10] is used

in these examinations. This model considers wall vibration

effects, as well as the thermal exchange and viscous

resistance on the vocal tract wall. In the following

examinations, the TLM and the proposed model used the

same values for the air density and speed of sound, � ¼
1:17 kg/m3 and c ¼ 346 m/s, respectively. The other

simulation constants of the TLM are the same as those

described in [10]. The simulation constants specific to the

proposed model are as follows: attenuation coefficient, � ¼
2:0� 10�3; per unit area mass, M ¼ 15 kg/m2; per unit

area resistance, B ¼ 6;170 kg/m2s; and per unit stiffness,

K ¼ 1:34� 105 kg/m2s2.

All the area functions in the examinations are measured

at equal intervals (0.25 cm, to ensure that the tube length

�l was 0.25 cm), and the simulation time step �t is set

to 5:0� 10�6 s, which satisfies the stability condition

described in Sect. 2.7. In addition, the impulse response

with a duration of 1 s is calculated using the proposed

model such that the frequency resolution of the transfer

function is 1 Hz.

3.1. Comparison of Transfer Functions and Radiation

Impedances for a Uniform Tube with a Lossless

Wall

Prior to implementing all the wall losses, the transfer

function of pout=Uin, and the radiation impedance for a

uniform tube, which has no losses on the wall, are

compared between the proposed model and TLM. The

tube length and radius are 17 cm and 1 cm, respectively.

For these calculations, in the proposed model, the wall

vibration effects are eliminated by setting � as 0 and the

pseudo visco–thermal losses are omitted by setting � as 0.

In the TLM, the terms corresponding to the wall losses

[10] are removed. Figure 3 shows these results. The

transfer function and radiation impedance calculated by

the proposed model agreed with those by the TLM. Note

that the radiation impedance in the proposed model is

calculated by poutð!Þ=Uoutð!Þ, where poutð!Þ and Uoutð!Þ
are obtained by Fourier transforming the sound pressure

and volume velocity at the lips when an impulse is input.

On the other hand, the radiation impedance in the TLM

is defined in the frequency domain [10]. The agreement

of the radiation impedances between the two models

indicates that Eq. (11) gives frequency dependent char-

acteristics to the radiation impedance, although Srad and

Grad have no frequency dependent characteristics in

themselves.

3.2. Effects of Wall Vibration and Adjustment Factor �

Figure 4 shows the pressure impulse response up to

16 ms for the uniform tube used in the previous section

calculated using the proposed model. In this calculation,

Fig. 3 Transfer function (upper) and radiation impe-
dance (lower) of a uniform tube with no losses on the
wall.

Fig. 4 Impulse response of a uniform tube calculated by
the proposed model without considering the wall
vibration effects (� ¼ 0).
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the pseudo visco–thermal losses are considered by setting

� as 2:0� 10�3, while the wall vibration effects are

eliminated by setting � as 0. The first peak of the impulse

response is observed at 0.495 ms, which corresponds to the

time at which the sound wave passed through the uniform

tube.

Figure 5 shows three transfer functions of pout=Uin for

the uniform tube. The line denoted by TLM presents the

transfer function calculated by the TLM while considering

all the wall losses. The other two lines indicate the transfer

functions calculated by the proposed model with (� ¼ 1)

and without (� ¼ 0) considering the wall vibration effects,

respectively. The peaks calculated with the effects tended

to be higher in frequency than those calculated without

the effects in the lower peaks. The ratio of the frequency

increase relative to the peak frequency without the effects

is 9.63% for the first peak, 1.09% for the second peak, and

less than 0.5% for the higher peaks. This result agreed with

that of a previous study [1]; the wall vibration effects

selectively increase the first peak frequency.

The first peak frequency calculated using the TLM,

fR1 TLM, is 519 Hz. For the proposed model, when the wall

vibration effects are fully considered, that is, � ¼ 1, the

first peak frequency fR1 is 535 Hz. On the other hand, when

the effects are ignored, that is, � ¼ 0, fR1 is 488 Hz. Thus,

to coincide the first peak frequencies calculated by the

proposed model and TLM, � should have a value between

0 and 1. The value of � at which fR1 becomes 519 Hz is

0.64. Thus, � was set as 0.64 hereafter.

Regardless of the wall vibration effects, the peak levels

of the transfer function calculated by the proposed model

are lower than those calculated by the TLM below the third

peak and vice versa above the peak. This could be due to

the third term in Eq. (3). This term is not a frequency

independent loss and uniformly reduces the peak level. On

the other hand, the losses caused by the thermal exchange

and viscous resistance are frequency dependent [10]. These

differences could cause peak level differences.

3.3. Comparison of Transfer Functions and the Lower

Four Peak Frequencies for the Five Japanese

Vowels

Figure 6 shows the vocal tract area functions of a

native Japanese male for the five vowels /a/, /i/, /u/, /e/,

and /o/. The area functions were extracted at equal

intervals of 0.25 cm from MRI (Magnetic Resonance

Imaging) data included in the ‘‘ATR MRI database of

Japanese vowel production’’ [11], according to the algo-

rithm described in Takemoto et al. [12]. The vocal tract

lengths of /a/, /i/, /u/, /e/, and /o/ are 18.25, 17.25,

18.75, 17.25, and 19.50 cm, respectively. Note that the

MRI data were obtained only during phonation, excluding

the inhalation phase [13], and supplemented with teeth [14]

in post-processing to ensure that the vocal tract shape

can be accurately measured. Detailed information, such as

scanning parameters, is described by Kitamura et al. [11].

Figure 7 shows the transfer functions of the five

Japanese vowels calculated by the proposed model and

TLM. Table 1 lists the frequencies of the first four peaks

extracted from the transfer functions and percent differ-

ence. Note that when introducing the wall vibration effects

using the adjusting factor (� ¼ 0:64), the first peak

frequency for all the vowels increases from 523 to

557 Hz for /a/ (6.5%), from 177 to 244 Hz for /i/

(37.9%), from 250 to 305 Hz for /u/ (22.0%), from 408

to 445 Hz for /e/ (9.1%), and from 361 to 408 Hz for /o/

(13.0%).

In addition, to examine the effects of these peak shifts

on vowel perception, a preliminary discrimination test was

performed using six subjects (two females and four males

in the age range of 22–24 years) with no hearing problems.

Five pairs of the vowels were synthesized using the

proposed model, with and without considering the wall

vibration effects when the same Rosenberg waves [8] were

input. All the synthesized vowels were downsampled to

16 kHz. Using a forced choice method, each subject

discriminated between the pairs randomly presented

through headphones eight times. The correct ratios are

33% for /a/, 40% for /i/, 73% for /u/, 23% for /e/, and

75% for /o/. There was no clear relationship between the

correct ratios and the amount or ratio of the peak shifts.

Fig. 5 Transfer functions of a uniform tube calculated
by the TLM and proposed model (� ¼ 0 and � ¼ 1).

Fig. 6 Area functions of the vocal tract for the five
Japanese vowels.
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Below the fourth peak for all the vowels, the transfer

functions calculated by the proposed model agree well with

those calculated by the TLM. The mean absolute percent

difference for these peaks is 2.30%, whereas fR1 diff for /i/

and fR2 diff for /u/ and /o/ are larger than 5%. However,

above the fifth peak, the two transfer functions for the

vowels /a/, /e/, and /o/ are in good agreement with each

other, while those for the vowels /i/ and /u/ are not.

For the first peak, a large difference is noted in the

vowel /i/. This vowel has the lowest fR1 among all the

vowels. As mentioned above, the first peak frequency

increases when the adjustment factor of � increases.

Therefore, for this vowel, because fR1 is smaller than

fR1 TLM, the value of � should be larger than 0.64. This

result indicates that it is difficult to obtain the value of �,

which adjusts the wall vibration effects of the proposed

model to the same extent as those of the TLM for all the

vowels.

For the second and higher peaks, large differences are

noted in the vowels /i/, /u/, and /o/. These vowels have

commonly strong constrictions in the vocal tract and/or a

small area at the lips (Fig. 5). These facts indicate that

the tubes with small cross-sectional areas could cause

these differences. Near the constrictions, the pressure and

volume velocity drastically change between adjacent tubes

around the high resonance frequencies, indicating that finer

temporal and spatial resolutions are necessary in the

difference approximation. In fact, we confirmed that those

differences reduced when the area function was resampled

at 0.1 cm intervals. A possible cause for these differences

is the FDTD scheme: the pressure and volume velocity

are calculated at positions that are half-shifted at spatial

discrete intervals and at times that are half-shifted at time

discrete intervals.

4. CONCLUSION

In this paper, we proposed a 1D model of the static

vocal tract that simulates wave propagation by considering

wall vibration effects in the time domain. The formulation

process of the governing equations showed that the term

representing the wall vibration effects appear only in the

continuity equation but not in the equation of motion. The

governing equations were discretized using the FDTD

scheme, that is, the staggered grid and leapfrog algorithm

[7], as described in Sect. 2.7. Briefly, this model is

categorized as a 1D FDTD model with a second-order

accuracy in space and time.

Table 1 Lower four peak frequencies of the transfer
functions for the five Japanese vowels calculated by
the proposed model ( fR1– fR4), those by the trans-
mission line model ( fR1 TLM– fR4 TLM), and the percent
difference for the former relative to the latter
( fR1 diff– fR4 diff). Bold type has an absolute percent
difference over 5%.

/a/ /i/ /u/ /e/ /o/

fR1 557 244 305 445 408
fR2 1,120 2,209 1,146 1,793 757
fR3 2,546 3,072 2,319 2,498 2,329
fR4 2,889 3,288 3,121 3,038 3,066

fR1 TLM 547 261 304 444 391
fR2 TLM 1,082 2,189 1,063 1,756 718
fR3 TLM 2,539 2,980 2,293 2,479 2,302
fR4 TLM 2,908 3,198 3,160 3,051 3,110
fR1 diff 1.83 �6:51 0.33 0.23 4.35
fR2 diff 3.51 0.91 7.81 2.11 5.43
fR3 diff 0.28 3.09 1.13 0.77 1.17
fR4 diff �0:65 2.81 �1:23 �0:43 �1:41

Fig. 7 Transfer functions of the vocal tract for the five
Japanese vowels calculated by the proposed model and
TLM.

H. TAKEMOTO et al.: 1D STATIC VOCAL TRACT MODEL IN THE TIME DOMAIN

15



In the proposed model, the wall vibration effects were

considered using a mass-spring-damper system. As de-

scribed in Sect. 3.1, this model tended to slightly over-

estimate the effects compared with those of the TLM.

When the effects were fully loaded, the first peak frequency

of the uniform tube calculated by the proposed model

was slightly higher than that calculated by the TLM. To

suppress the effects as much as those in the TLM, the

adjustment factor � was introduced and its value was

determined to be 0.64. To mitigate the overestimation, the

wall properties M, B, and K need to be reexamined.

The transfer functions for the five Japanese vowels

calculated by the proposed model agreed with those

calculated by the TLM in the lower frequency region

below the fourth peak, as described in Sect. 3.3. However,

relatively large discrepancies have been observed in

several cases. Although the causal factors could not be

identified, small cross-sectional areas at the lips and

constrictions possibly decreased the accuracy of the differ-

ence approximation, resulting in the discrepancies.

The proposed model cannot always calculate the same

transfer function as the TLM and the difference approx-

imation may decrease the calculation accuracy; never-

theless, there are a few advantages. First, the proposed

model is easy to implement; it can be implemented within

approximately 50 lines of code using MATLAB. Second,

the proposed model can easily calculate and visualize the

resonance mode of the pressure and volume velocity in

the vocal tract when the sinusoidal waves with the peak

frequency are input (Fig. 8). Third, because the pressure

just above the glottis can be obtained at every simulation

time step, the proposed model can be easily combined with

the vocal fold model, such as the two-mass model [15], to

examine the acoustic interactions between the vocal fold

and tract. Hence, despite its disadvantages pertaining to the

relatively low calculation accuracy, the proposed model is

simple, useful, and extendable, furthering the understand-

ing of vocal tract acoustics in students.
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105, 2920–2932 (1999).

[11] T. Kitamura, H. Takemoto, S. Adachi and K. Honda, ‘‘Transfer
functions of solid vocal-tract models constructed from ATR
MRI database of Japanese vowel production,’’ Acoust. Sci. &
Tech., 30, 288–296 (2009).

[12] H. Takemoto, K. Honda, S. Masaki, Y. Shimada and I.
Fujimoto, ‘‘Measurement of temporal changes in vocal tract
area function from 3D cine-MRI data,’’ J. Acoust. Soc. Am.,
119, 1037–1049 (2006).

[13] S. Takano, K. Honda and K. Kinoshita, ‘‘Measurement of
cricothyroid articulation using high-resolution MRI and 3D
pattern matching,’’ Acta Acust. united Ac., 92, 725–730 (2006).

[14] H. Takemoto, T. Kitamura, H. Nishimoto and K. Honda, ‘‘A
method of tooth superimposition on MRI data for accurate
measurement of vocal tract shape and dimensions,’’ Acoust.
Sci. & Tech., 25, 468–474 (2004).

[15] K. Ishizaka and J. L. Flanagan, ‘‘Synthesis of voiced sounds
from a two-mass model of the vocal cords,’’ Bell Syst. Tech. J.,
51, 1233–1268 (1972).

Fig. 8 Resonance mode of pressure (upper) and volume
velocity (lower) at fR3 for /a/.

Acoust. Sci. & Tech. 44, 1 (2023)

16


