歌唱指導前後の声道立体形状と歌声の比較

Comparison of three-dimensional shape of vocal tract and singing voice before and after singing lesson

志々目 樹[†] 戸田 菜月[‡] 竹本 浩典[†] 高橋 純^{††} Itsuki Shishime[†] Natsuki Toda[‡] Hironori Takemoto[†] and Jun Takahashi^{††}

† 千葉工業大学先進工学研究科 〒275-0016 千葉県習志野市津田沼 2-17-1 ‡ 千葉工業大学工学研究科 〒275-0016 千葉県習志野市津田沼 2-17-1
† † 大阪芸術大学短期大学部 〒546-8550 大阪府南河内郡河南町東山 469
† Advanced Engineering, Chiba Institute of Technology 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
‡ Engineering, Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016, Japan
‡ Osaka University of Arts Junior College 469 Higashiyama, Kanan-cho, Osaka 546-8550, Japan

E-mail: † hironori.takemoto@p.chibakoudai.jp, † † jun_takahashi@osaka-geidai.ac.jp

あらまし本研究では、声楽未経験の一般大学生1名にオペラの歌唱指導を2年間行い、その前後の声道立体形状と歌声の変化を検討した.声道立体形状は MRI で計測して声道伝達関数を求めた.また、歌唱中の音声を収録し、音声スペクトルを抽出した. その結果、歌唱指導後は口の開きが増大して口腔容積が増加し、喉頭が下降して喉頭腔 上部が狭まるなど下咽頭腔の形状が変化した.これらの変化により、第2フォルマント 周波数が下降し、第3、4フォルマントがクラスター化して歌い手のフォルマントを形 成した.また、梨状窩に由来する4~5 kHzの帯域のディップが深くなり、高域のスペ クトルのレベルが減少した.

キーワード 声道立体形状 歌唱指導 音響分析 調音運動 歌い手のフォルマント

1.はじめに

男性オペラ歌手の歌声のスペクトルに は 2.8 kHz 付近に歌い手のフォルマント (Singer's Formant,以下 SF)と呼ばれる 非常に大きな高まりが見られる[1]. これ は第3~5フォルマントがクラスター化し たものであり、その生成には下咽頭腔、す なわち喉頭や梨状窩が関与することが知 られている[2]. しかし、長期間にわたる 歌唱指導において学習者の歌声や体内運 動がどのように変化して SF を獲得して いくか十分には検討されていない. そこで本研究では, 声楽未経験の男子 大学生1名に対して2年間歌唱指導を行 い, 歌唱指導開始前, 1年後, 2年後に歌 唱中の声道形状を MRI で撮像してその変 化を計測した.また, 計測した声道形状か ら伝達関数を計算して歌声のスペクトル と比較し, 声道の音響特性がどのように 変化したのか検討したので報告する.

2. 材料と方法

2.1. 声道モデル

実験参加者は声楽の経験がない一般大 学生1名である.実験参加者は音楽大学 で教鞭を執るプロの声楽家に隔週1回の 歌唱指導を2年間受けた.指導前,指導 開始1年後,2年後に(株)ATR-Promotions に設置された MRI 装置 (Siemens 製 MAGNETOM Prisma fit 3T) で母音/a/を約 10秒間歌唱中の頭頸部を撮像した.音高 は実験参加者が発声しやすい A#3 (233 Hz) とした.なお,空間解像度は 1.0×1.0×2.5 mm とし,歌唱中の音声は光マイクロホン

(optimic1140)で収録し,撮像時の装置ノ イズが含まれていない部分から音声スペ クトルを抽出した.

MRIでは歯列と口腔が同じ輝度値(黒) となり、口腔形状を正確には計測できな い.そこでまず、口を閉じてMRIで高い 輝度値(白)となる口唇、頬、舌を歯列に 密着させて頭頸部をMRIで撮像した.次 に、白い軟組織に囲まれた黒い歯列を抽 出して輝度値を反転し、母音発声中の MRIデータに補填[3]した.そして、声門 から口唇までの声道形状を抽出し、声道 の周囲に厚さ3mmの壁を形成して声道 モデルを作成した.

2.2. 音響シミュレーション

FDTD 法 (Finite-Difference Time-Domain method) により, 母音/a/発声時の声道モデ ルの声門から口唇までの声道伝達関数を 計算した. なお, シミュレーションの空間 離散化間隔は 0.5 mm, 時間離散化間隔は 0.5 μs とした.

また,声道伝達関数のピークやディッ プの周波数でモデルを励振して定常状態 に達した後の瞬時音圧分布を可視化し, ピークやディップの成因を検討した.

2.3. 声道形状の比較

歌唱指導開始前,1年後,2年後に MRI で撮像した頭頸部の形状は, MRI 装置に 仰臥する際の実験参加者の首の角度や撮 像時の断面位置の設定で変化しているた め,直接比較することはできない.そこで、 3 つの頭頸部の形状を首の角度の影響を 受けない脳頭蓋で位置合わせした.まず, 指導開始1年後,2年後の脳頭蓋を指導開 始前の脳頭蓋に位置合わせする剛体変換 行列を画像の強度に基づく勾配降下法で それぞれ求めた.次に,指導開始1年後, 2 年後の頭頸部の MRI データを剛体変換 行列で指導開始前の MRI データの座標系 に写像した. そして, 各 MRI データの正 中矢状断面を抽出し,頸椎や声道形状な どをトレースして比較した (Fig. 1).

Fig. 1 位置合わせした MRI データから 抽出した正中矢状断面とトレース

3. 結果と考察

3.1. 声道伝達関数の比較

Fig.2は音声スペクトルと声道伝達関数 である.以下,指導開始前,指導開始1年 後,指導開始2年後の音声スペクトルを それぞれ SPC0, SPC1, SPC2, そのフォル マントを周波数の低い方から F1, F2, ...と する.また,声道伝達関数をそれぞれ TF0, TF1, TF2, そのピークを fR1, fR2 ...とす る. SPC0とTF0はF1~F3とfR1~fR3が 一致したが, 3.0 kHz 以上の帯域では概形 が一致せず, SPC0 より TF0 のレベルが高 かった. 一方, SPC1 と TF1, SPC2 と TF2 は、全帯域にわたって概形やレベルは一 致したが, F2 と F3 より fR2 と fR3 はそ れぞれ低域に現れた. また, SPC2 では 2.8 kHz 付近に顕著な SF が見られたが, TF2 ではピークのクラスタは見られなかった. これらの相違は音声スペクトルは約10秒 間の発声からノイズを含まないごく一部 の区間を切り出したものであるのに対し て、伝達関数を計算した声道形状は約10 秒間の平均であることが要因だと考えら れる. すなわち, 声道形状は常に微細に変 動しているため、瞬間的な音声スペクト ルと,変動が平均化された声道から計算 した伝達関数の比較が必ずしも適当では ないのかもしれない.しかし,これらの相 違を考慮しても, SF と fR3 と fR4 は周波 数が近いことから, SF は fR3 と fR4 が近 接することによって生成されていると考 えられ, SPC2のSFはF3とF4がほぼ重 畳して形成されたと考えられる.

Fig. 3 は音声スペクトルの比較である.
2.8 kHz 付近の SF のピークは, SPC0, SPC1,
SPC2 の順でより顕著になった.これは,

歌唱訓練によって SF が顕著になったこ とを示している. そしてこれは, Fig.2の 結果に基づけば, F3 と F4 の近接の程度 が大きくなったためと考えられる.

(上段:指導開始前,中段:指導開始1年
 後,下段:指導開始2年後)

Fig. 4 は声道伝達関数の比較である. TF1 および TF2 では TF0 に比べて fR2 の 周波数が低かった.この傾向は Fig. 3 の音 声スペクトルでも見られた. fR4 は TF0, TF1, TF2 の順に周波数が下降しており, fR3 と近接する要因と考えられる.また, TF0 に比べ, TF1, TF2 では 4 kHz 以上の 周波数帯域で音圧レベルが低下した.こ の要因として梨状窩のディップの影響が 考えられる.瞬時音圧分布の可視化によ り, TF0 では, 2.8 kHz と 4.3 kHz, TF1 で は 3.5 kHz と 4.5 kHz, TF2 では 2.95 kHz と 4.05 kHz のそれぞれ 2 つのディップが 梨状窩に由来していた. TF0 では 2 つの ディップが 1.5 kHz ほど隔たっているが, TF1, TF2 ではそれぞれ 1.0 kHz と 1.1 kHz に近接していた. まだ, TF0 に比べて TF1, TF2 では 2 つのディップが深くなってい た. これらが TF0 に対して TF1, TF2 の 4.0 kHz 以上の帯域で音圧レベルが低下し た要因と考えられる.

Fig. 4 声道伝達関数の比較

3.2. 声道形状の比較

Fig. 5 は指導前,指導開始1年後,指導 開始2年後の声道形状の比較である.以 降,それぞれVT0,VT1,VT2とする.な お,図中のC2~C7は第2~7 頸椎,T1, T2は第1,2胸椎である.

まず, VT0, VT1, VT2の順で頸椎と胸 椎が脳頭蓋に対して前方に大きく移動し た.これは,喉の広がった感覚を身につけ るため,下顎を首に押し付けるようにで きるだけ後ろに引かせる歌唱指導の結果 であると考えられる[4]が,それに対する 音響的な影響は明確にできなかった.

次に、VT0 に比べて VT1 と VT2 はロが開いて口腔が拡大した. Fig. 6 の上段はVT0 の声道断面積関数,下段は声道断面

積関数に位置的に対応する fR2 における 音響感度関数 (Sensitivity Function) [5]で ある.音響感度関数とは,対応する声道の 部分の断面積が増加した場合の fR2 周波 数の増減の程度を示す関数である.例え ば,Fig.6の破線で示す声門から 8.6~13.6 cmの口腔に該当する区間で音響感度関数 は負となっている.これは,この区間の声 道断面積が増加すれば fR2 周波数が低下 することを意味する.これより,前述した TF0 より TF1 および TF2 で fR2 の周波数 が低かった原因は,口腔の容積が増大し たためと考えられる.

さらに、VT0 では C5、VT1 と VT2 で は C6 付近に喉頭が位置していた. すなわ ち、歌唱指導により、喉頭は頸椎約 1 つ 分下降したといえる. これによって, 咽頭 腔が伸長し, 喉頭室, 梨状窩などの下咽頭 腔の形状が変化して音声スペクトルが変 化したと考えられる.

喉頭の下降とどのような関係があるか 明確ではないが、Fig.5では喉頭腔の上部 が VT0 より VT1 や VT2 で狭まっている ように見えるがはっきりしない. そこで, 喉頭腔上部で咽頭との境界の断面積を計 測した. その結果, 指導開始前, 指導1年 後,指導2年後の断面積はそれぞれ1.090, 0.185, 0.107 cm² であり,指導によって喉 頭上部が狭くなった.この部分が狭くな ると,喉頭腔が声道のその他の部分に対 して音響的に独立する程度が高くなるこ とが知られている[6]. そのため, fR3 と独 立して fR4 を制御して 2 つのピークを重 畳させることが可能になり, 音声スペク トルでは顕著な SF を生成すると考えら れる.

Fig.5 声道形状の比較

Fig. 6 VT0 の声道断面積関数(上段)と fR2 における音響感度関数(下段)

4.まとめ

本研究では声楽未経験の男子大学生 1 名の歌唱指導開始前,1年後,2年後の歌 唱中の体内運動を MRI で撮像し、声道形 状と音響特性を分析した.その結果,音声 スペクトルの比較では F3, F4 の近接によ る SF の形成が見られ, SPC0, SPC1, SPC2 の順に SF の大きな高まりが見られた.こ れらは喉頭の下降と喉頭腔上部の断面積 の減少が要因であると考えられる.声道 伝達関数の比較では, TF0 に対して, TF1, TF2 では fR2 が下降した. 音響感度関数 による分析の結果,これは口腔容積が増 大したことが要因であると考えられる. また, TF0 に対して TF1, TF2 では 4.0 kHz 以上の周波数帯域で音圧レベルが減少し た. この減少はこの帯域にディップを生 成する梨状窩が関与している可能性があ るが、本研究では明確にできなかった.

謝辞

本研究は JSPS 科研費 23K11172 の支援 を受けた.また,実験に協力していただい たすべての方々に感謝する.

参考文献

- Sundberg. J, The Science of The Singing Voice, Northern Illinois University Press, 1987.
- [2] 志々目ら,音講論(秋),969-970,2023.
- [3] 加地ら, 音講論 (春), 801-802, 2022.
- [4] 荻野仁志,後野仁彦,発声のメカニズム,音楽之友社,2004.
- [5] Story, JASA, 119(2), 715-718, 2006.
- [6] Takemoto *et al.*, JASA, 120, 2228-2238, 2006.